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Abstract

Stochastic simulation of facies or geologic units is important before the assignment of continuous rock properties.
Sequential indicator simulation (SIS) remains a reasonable approach when there are no clear genetic shapes that could be
put into object-based modeling. Constraining SIS to soft secondary data coming from geological interpretation or
geophysical measurements is important. There are a number of techniques including indicator kriging (IK) with a local
mean, collocated cokriging, Bayesian updating, permanence of ratios, block kriging and block cokriging. BlockSIS
implements all of these and more (nine all together). The images may also be cleaned using maximum a -posteriori

selection.
© 2006 Elsevier Ltd. All rights reserved.

Keywords: Geostatistics; Cokriging; Kriging; Soft data

1. Introduction

Geostatistical realizations are being used increas-
ingly for uncertainty quantification. There are many
important decisions in geostatistical modeling.
Choosing the volume to estimate within is arguably
the most important. Decisions of stationarity are
also important. It is common to create models of a
categorical variable that represents facies or rock
type. Stationarity is assumed within the different
categorical variables. Such categorical variable
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models are sometimes built deterministically relying
on expert judgment; however, in many cases there is
inadequate data to permit reliable modeling. A
stochastic modeling algorithm is used to construct
multiple realizations. Sequential indicator simula-
tion (SIS) is a widely used technique for categorical
variable models,

There are legitimate criticisms against SIS. The
models can appear very patchy and unstructured;
indicator variograms only control two-point
statistical measures. Object-based or process-based
models provide more structural control. SIS also
often leads to uncontrolled and geologically un-
realistic transitions between the simulated cate-
gories; the cross correlation between multiple
categories is not explicitly controlled. Truncated
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pluriGaussian models provide a more straightfor-
ward approach to handle multiple category inter-
actions,

Despite these criticisms, there are many good
reasons to consider SIS. The required statistical
parameters are easy to infer from limited data. The
models are reasonable in settings where there are no
large-scale curvilinear features. The algorithm is
robust and provides a straightforward way to
transfer uncertainty in categories through to the
resulting numerical models.

A number of SIS variations have evolved over the
years, Most of the variations relate to the use of soft
secondary data arising from geological interpreta-
tion or geophysical measurements. This paper
collects the most common variations together in
clean GSLIB-like code,

2. Methodology

Consider K different categories. They are mu-
tually exclusive—only one category can exist at a
particular location. They are exhaustive—one of the
categories must exist at all locations. The catego-
rical variable is expressed as a series of K indicator
variables:

1 if category k prevails at location u

k=1 K.

5 ey

(1
An indicator variable is often interpreted as the
probability for a category to prevail at a particular
location: the probability is 1 if it does prevail and 0
if it does not. Hard local measurements are coded
into 1s and 0s. Imprecise or soft measurements may
be coded into continuous probabilities between 0
and 1. Classical (geo) statistical inference is under-
taken using indicator data including declustering for
representative proportions and variography to
understand the spatial continuity of each of the K
indicator variables.

The local hard and soft indicator data are used to
estimate the distribution of uncertainty at an
unsampled location. Commonly, kriging is used
for this estimation hence the name indicator kriging
(IK). The K estimates i (wk), k=1,..., K vary
continuously between 0 and 1; they depart from the
global proportions in presence of relevant local
data. Regardless of how the indicators are inter-
polated, they do not always satisfy the order
relation requirement for a closed set of probabilities,
that is, they should be non-negative and sum to 1.0.

i(u k) = {

0 otherwise

Standard practice is to reset negative estimates
to zero and then standardize the K estimates to sum
to one by dividing through by the sum. Order
relation deviations always exist. They are more
severe when the K estimates are inconsistent with
each other.

Sequential indicator simulation applies IK in a
sequential fashion where a precise category is drawn
by Monte Carlo simulation at each location. All
locations are visited sequentially with an increasing
level of conditioning. A random order is followed to
avoid artifacts. The simulated realization repro-
duces the indicator variograms according to the
same simple kriging principle used in continuous
variables. Order relation deviations lead to a lack of
reproduction.

The main purpose of modeling a categorical
variable such as facies and rock type before
continuous petrophysical properties is to permit a
more reasonable decision of stationarity, that is, to
provide subdivisions that are more geologically and
statistically homogeneous. Interestingly, however, it
is common for the categories themselves to have
trends and regions of higher and lower proportion.
Information on trends is available from geological
mapping or geophysical measurement. Geological
trends are mapped as proportions or probabilities.

Geophysical measurements could be treated as a
secondary variable for cokriging, which does not
require the seismic data to be explicitly calibrated to
facies proportions; the original seismic units could
be retained and the calibration enters through the
cross covariances between the hard indicator data
and soft seismic data. Notwithstanding this flex-
ibility of cokriging, calibrated probability values are
preferred because: (1) the calibrated probability
values are in units we understand, and (2) cross
variograms or covariances are often difficult to infer
in presence of sparse well data. This calibration is
discussed in many sources including Deutsch,
(2002).

Based on direct mapping or calibration, the soft
secondary data takes the form p(wk), k=1,..., K
where p is the proportion or probability of category
k at location u. The locally varying proportions may
be at a larger scale; often, they represent vertical
averages over a particular stratigraphic interval. A
number of different (co) kriging options have
evolved to handle soft secondary data. Following
are the kriging options available in the BlockSIS
program:
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Option Description

0 Stationary simple kriging

1 Ordinary kriging

2 Nonstationary simple kriging using
residuals from local mean

3 Nonstationary simple kriging assigning
one minus the sum of the weights to the
local mean

4 Collocated cokriging

5 Bayesian updating

6 Updating of probabilities with permanence
of ratios

7 Block kriging with probability representing
the Z thickness

8 Block cokriging with probability

representing the Z thickness

Each of these kriging options will be described
below. Goovaerts’s book is a good place to find a
more thorough description of the various kriging
equations. The focus here is on the differences
between the options and the implementation in
BlocksSIsS. Option 0 is stationary simple kriging,
which is required by theory for CDF and variogram
reproduction. In presence of n nearby data the
estimator is written:

iS(u k) = pe = Y SNk« [i(us; k) — pi]

o=1

S (k) = > 73 s k) i(uy; k)
oa=1

+

ST k)] P @)
a=1

The second equation is a reorganization of the first.
The simple kriging weights are solved by the well
known kriging equations; the notation for the
kriging weights is somewhat confusing, but it is
required to be clear that the weights are for each
data (« subscript), by simple kriging (the SK
superscript), and they relate to the location being
estimated and the particular category (the (u;k))
parenthetical parameters. The p, values are the
global declustered mean probability for each
category. The K estimates are performed indepen-
dently and order relation deviations are corrected.
Note that the kriging variance is not used; we only
need the weights. We also note that if the kriging
weights were to sum to one, the global mean would
not be used in the equation.

Option 1 is ordinary kriging. The kriging weights
are constrained to sum to one. The estimator
simplifies to

o) = 3 0% (s k) i ). (3)
a=1

Ordinary kriging is not recommended in sequential
Gaussian simulation because of variance inflation;
however, ordinary indicator kriging does not have
the same problem because the kriging variance is
not used. Ordinary kriging in sequential simulation
does not always work as expected. Previously
simulated grid nodes are used in the kriging, which
spreads the influence of the original data to a much
larger region than expected.

The remaining seven options in BlockSIS are
various ways to use secondary data. Option 2 uses
nonstationary simple kriging with residuals from
the locally varying mean probabilities:

n

iy, (W) — pru) = > AR i)« [i(uy: k) — py(uy)].

=1

(4)

The simple kriging weights are the same. We cannot
reorganize this equation as we did in Eq. (2) because
the locally varying mean is different at the location
being estimated and the data locations.

Option 3 is a slight modification to the general-
ized nonstationary simple kriging. One minus the
sum of the weights is assigned to the local mean:

iy, (0 k) = Z 5K u k) i(uy: k)
oa=1
e (' k)] *py(w). (5)

a=1

+

The differences between Options 2 and 3 are minor
when the locally varying mean values are smooth,
but the differences can be more significant when
there is greater variability in the local probability
values, for example, when they come from seismic
data.

Option 4 is a collocated cokriging. A simplified
cokriging system is solved to get the n + 1 weights
that apply to the n hard indicator data and the
collocated probability:
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itk (usk) = Z 25K (k) iCuys ko) + A5+ pi(w)

I—Z“CCKm;k) W ope (©)

ipr(u; k) =

(1 —Pk/Pk)

(1= pi/pi) —

A correlation coefficient is required to build and
solve the simplified cokriging system of equations.
A different correlation coefficient could be used for
each category; however, care should be taken to
ensure consistency. The correlation coefficient could
not be high for one category and low for another
category. They can be increasingly different as there
are more categories. Unbiasedness requires that one
minus the sum of all weights be applied to the global
mean. Collocated cokriging assumes a Markov-type
model of coregionalization between the soft prob-
ability and the hard indicators.

Option 5 is Bayesian updating, There are inter-
esting theoretical links between Bayesian Updating
and collocated cokriging. The implementation,
however, is quite different and it is worthwhile to
have this option implemented differently from the
previous option. The simple kriging estimate is
calculated Eq. (2) and postprocessed as follows:

(u)

i k) = it (u; k) o 222 ”k 7)

where p,(u) is the locally varying probability and p,
is the global probability for the kth category. The
updated probability for one or more of the
categories could exceed 1.0, which is non-physical.
The resulting probabilities would have to be
corrected. A standard order relations correction is
to (1) reset all negative probabilities to zero, then (2)
divide the probabilities by the sum of all probabil-
ities. There is no need for a correlation coefficient;
the information content in the secondary data is
contained in the difference of p;(u) from p,. There is
an implicit assumption of conditional independence
in this Bayesian updating formalism.

An alternative updating procedure dubbed per-
manence of ratios was proposed by André Journel
(Journel, 2002). The permanence of ratios method is
equivalent to the naive Bayes model in machine

(1 — 5y (us ) /iy (w3 K)) —

learning. Many people consider this method to 53
provide an improved scheme for merging two
estimates of conditional probability (the SK esti- 55
mate and the secondary data estimate in our
context). Option 6 uses this procedure. The equa- 57
tion for the estimate is as follows:
59
(1= pe)/pew) ® o
63
where pi(u) is the locally varying probability and p, 65
is the global probability for the kth category. There
is a different implicit assumption of dependence in 67
this formalism.

Option 7 implements block kriging for the local 69
probability. An assumption is made that the
secondary data represents the value over the entire 71
vertical extent of the model, which is appropriate in
many stratigraphic settings. The estimator: 73
i (k) = ZZBK(u k) * i(uy; k) + 255+ py(u) &

77
ZABK(u k) = 2 | op ©)
79
The average covariances between every data and the 31
assumed block data p,(u) is calculated by numerical
integration. There is an assumption that the block 83
data is a true average of the smaller scale values. A
block average of probabilities is not the probability 85
of the block; it is a composite or average of point
scale probability values. g7

Option 8 implements block cokriging for the local
probability. This is similar to Option 7, but block 89
cokriging is performed instead of block kriging. A
Markov-type model is assumed whereby the cross 9]
variogram at a point-scale is derived from the
indicator variogram and the correlation coefficient. 93
A similar numerical integration approach is used to
calculate the require block cross covariances. The 95
estimator:

n 97
ik (k) = > 25N (k) 2 ilugs k) + APET < py(w)

=1 99

1= ANk = 225  ope (10) 44,

The correlation coefficient can depend on the 103

category, but in general they should be similar.
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2.1. Choosing the right option

The nine different options available in the
BlockSIS program can be confusing. There are a
number of general remarks about when the different
options should be chosen:

e Simple kriging (Option 0) is the best approach
when there is no secondary data and there is no
evidence of significant nonstationarity. Simple
kriging is required by theory for statistical
parameter reproduction.

e Ordinary kriging (Option 1) is a good approach
when there are many local data and there is some
evidence of non stationary areas.

e The locally varying mean approach (Options 2
and 3) is suitable for local mean values coming
from geological interpretation. They could be
used for geophysical-derived values. The first
local mean option (2) is the most correct by
theory; however, the simplified option 3 places
slightly more emphasis on the local hard data
instead of the local mean values.

e Collocated cokriging (Option 4) is suitable when
the scale of the secondary data is similar to that
being modeled and there is a clear statistical
correlation between the hard data and the
secondary data. Collocated cokriging gives ex-
plicit control over the weight placed on the
secondary data.

e The updating approaches (Options 5 and 6) are
suitable when there are few hard data and it is
not straightforward to establish a correlation
coefficient. The correlation is somehow em-
bedded in the local probability values, but it is
not explicitly specified. The Bayesian Updating
approach will give more weight to the secondary
data. The permanence of ratio approach will, in
general, give less weight to the secondary data
because its redundancy with the hard data is
captured better.

e The block (co)kriging approaches (Options 7 and
8) are appropriate for cases where the secondary
data represents a vertical average over the
vertical extent of the model. Block kriging is
correct when the secondary probability values
are reliable. The cokriging approach can be used
to downweight the secondary data.

In the end, there is no recipe for correct application.
The results should be carefully checked to ensure
that there are no biases in the local or global

proportions and that the patterns of spatial varia-
tion appear reasonable.

2.2. Image cleaning

One concern with sequential indicator simulation
is that the realizations often show short-scale
variations, which appear geologically unrealistic.
In some cases, such variations affect subsequent
processing and predicted reserves; a justifiable
reason to consider realization cleaning algorithms.
A second concern is that the category proportions
often depart from their target input proportions. In
particular, facies types with relatively small propor-
tions (5-10%) may be poorly matched. In indicator
simulation, the main source of this discrepancy is
the order relations correction (the estimated prob-
abilities are corrected to be non-negative and sum to
1.0). There is no evident alternative to the com-
monly used order relations correction algorithms;
post-processing the realizations to honor target
proportions is a convenient and attractive solution.

For convenience, the maximum a posteriori
selection or MAPS technique has been implemented
within the BlockSIS program. The basic MAPS
algorithm amounts to replacing the categorical code
type at each location by the most probable category
based on a local neighborhood. The probability of
each category, in the local neighborhood, is based
on (1) closeness to the location being considered; (2)
whether or not the value is a conditioning datum,;
and (3) mismatch from the target proportion.

Four variations are implemented in BlockSIS:
no cleaning, light cleaning, heavy cleaning, or super-
duty cleaning. The basic structure and weighting of
the cleaning is based on the covariance table that is
constructed for the kriging. Larger cleaning win-
dows are considered when the level of cleaning is
increased. The user should choose the level of
cleaning carefully; unnecessary cleaning can impose
too much continuity and unreliable distributions of
uncertainty.

3. Program

The BlockSIS program follows standard
GSLIB conventions. Most of the functions are
available in GSLIB. Two source code files are
required: BlockSIS. for and BlockSISsubs. -
for; the subroutines have been collected to facil-
itate compilation if the compiled GSLIB library is
not available. There are no hard-coded limits in the
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BlockSIS program; dynamic memory allocation is used throughout. The parameters for the program:

Line START OF PARAMETERS:

1 8 0=SK,1 =0K,2=L1,3=L1L2,4=CC,5=BU,6 =PR,7=BK,8§ = BC
2 1 Clean: 0 = none, 1 = light, 2 = heavy, 3 = super

3 2 number of categories

4 0 1 categories

5 0.70 0.30 global proportions

6 0.50 0.50 correlation coefficients for soft data
7 well.dat file with local data

8 1 2 3 4 columns for X,Y,Z, and category

9 lvm.dat file with gridded prior mean values

10 1 2 columns for each category

11 3 2-D areal map (2) or 3-D cube (3)

12 keyout.dat file with keyout array

13 1 column for keyout indicator

14 1 debugging level: 0,1,2,3,4

15 BlockSIS.dbg
16 BlockSIS.out
17 1

18 100 0.00 150.0 nx,Xmn,Xsiz

file for debugging output
file for simulation output
number of realizations

maximum original data for each kriging
maximum previous nodes for each kriging

19 150 0.00 150.0 ny,ymn,ysiz

20 50 0.00 1.0 Nnz,zmn,zsiz

21 69069 random number seed

22 12

23 12

24 1 assign data to nodes? (0 = no,1 = yes)
25 0 maximum per octant (0 = not used)
26 5000. 5000. 10. maximum search radii

27 30. 0. O.
28 101 101 101

angles for search ellipsoid
size of covariance lookup table

29 1 0.0 Cat 1: nst, nugget effect

30 1 1.0 30. 0.0 0.0 it,cc,angl, ang2, ang3
31 5000. 5000. 10. a_hmax, a_hmin, a_vert
32 1 0.0 Cat 2: nst, nugget effect

33 1 1.0 30. 0.0 0.0 it,cc,angl, ang2, ang3
34 5000. 5000. 10 a_hmax, a_hmin, a_vert

The kriging option is specified on Line 1. The
cleaning option is specified on Line 2. The number
of categories and the category codes are specified on
lines 3 and 4. The global proportions (expressed as a
fraction) are specified on Line 5. They are required
regardless of the kriging option chosen. The
correlation coefficients between the hard indicators
and soft probabilities for each category are specified
on Line 6. They are required regardless of the
kriging option chosen.

The local data are specified on Lines 7 and 8.
Standard GSLIB conventions are used for the data
file and the column specifications. Unconditional
realizations are created if the file does not exist. The
locally varying probabilities are specified on Lines 9,
10 and 11. A probability is required for each
category even though they must all sum to 1 and
there are only K-1 degrees of freedom. Line 11
specifies whether the locally varying probabilities
represent an areal 2-D map or a full 3-D grid. The 2-
D values will be replicated to the 3-D grid if
required. A mask or keyout array the size of the grid
may be considered; Lines 12 and 13 specify the
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Fig. 1. Maps and histograms of local probability values for facies types 0 (left) and 1 (right). Red dots are well locations. Histograms of 101

prior mean values and indicator variogram are also shown.
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keyout file. Locations where the keyout value is 0
will not be simulated; locations where the value is 1
will be simulated. The entire grid will be simulated if
there is no keyout file.

The debugging level and a file for the debugging
output are specified in Lines 14 and 15. The output
file is specified on Line 16. Standard GSLIB
conventions are followed. The number of realiza-
tions is specified in Line 17. The grid in standard

GSLIB conventions is specified on Lines 18, 19 and
20. The random number seed is in Line 21.

Lines 22 through 28 specify search parameters.
Line 24 specifies whether or not the data are
assigned to the grid node locations. It is more
CPU efficient to assign the data, but that may not
be acceptable given the spacing of the data and the
grid size. The number of original data in Line 22 is
only used when the data are not assigned to grid
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Fig. 2. Slices through SIS (SK) realization with no cleaning. Horizontal slice (at top) is through center of model. Two XZ cross sections 103

are at index 76 (near center) and 30 (toward South).
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nodes. The number of previously simulated grid
nodes, specified on Line 23, is used for original data
assigned to grid nodes and to previously simulated
grid nodes. A maximum number per octant is
specified on Line 25; it is used if it is greater than 0.
The search radii and orientation is specified on
Lines 26 and 27. The size of the covariance lookup
table is on Line 28. The lookup table should be set

large enough to avoid calculating the covariances
every time; this is particularly true if block kriging.
The vertical size of the covariance lookup table
should be set to 2nz+1.

Lines 29 and greater specify 3-D variogram
models in standard GSLIB conventions for each
category. A variogram model is required for each
category — even if there are only two.

{ |

|
|

|

|

|

|

Mf,'

|

ui,,'

h
J S

1

Fig. 3. Slice through SIS (SK) realization with different cleaning options: no cleaning (top), light, heavy, and super cleaning (from top to

bottom). All realizations reproduce well data.
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4. An example

We will use a small 2-category example for
illustration. The first category (facies) “0” is non-
net reservoir and the second facies ““1”° is net sand.
Fig. 1 shows the location of six wells and locally
varying mean values coming from mapping. We see

that the proportion of facies 0 is 0.635 and the
proportion of facies 1 is 0.365. The proportions
from the well data are 0.705 and 0.295. We should,
of course, use the proportions from the locally
varying mean which are declustered to represent the
area of interest. There is no vertical resolution in the

locally varying mean values; they represent the
1.0
0.8
Number of data 8
[
o 0.6 .
© X Variable: mean 0.336
2 std. dev. 0.248
z .
5 0.4 4 Y Variable: mean 0.293
= 1 sid. dev. 0.245
correlation 0.972
0.2 1 . rank correlation 1.000
0 T T T 1

T T
0 0.2 04 06 0.8 10
Local Probability
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Fig. 4. Slices through SIS (Block Cokriging) realization with light cleaning. Horizontal slice (at top) is through center of model. Two XZ 103

cross sections are at index 76 (near center) and 30 (toward South).
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entire vertical thickness of the stratigraphic layer.
8% of the grid is keyed out—notice the edges.

The vertical indicator variogram from the well
data is shown at the bottom of Fig. 1. The blue
curve is a single spherical structure with a range of
17m, which is the simplest reasonable variogram
model to consider. A two-structure variogram

model with a dampened hole effect is shown as
the red curve. The range on these variograms is
likely too large; it is being affected by the non-net
wells. The range could be decreased. That detailed
analysis is outside the scope of this note on the
BlockSIS paper.

Reference Proportion

07
086
05
0.4

03

02

0.1

0

Option 0: Simple Kriging Option 1: Ordinary Kriging Option 2: LVM 1

Option 3: LVM 2

Option 4: Collocated Cokriging Option 5: Bayesian Updating

[ f .4

Option 6: Penmanence of Ratios Option 7: Block Kriging Option 8: Black Cokriging

i

Fig. 5. Areal proportions of facies 1. Reference is at top center. All options averaged over 10 realizations are shown below.
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The grid is 111 by 140 by 35 grid nodes (543900
total). The indicator variograms will be fixed with a
very small nugget effect, a single spherical structure,
a vertical range of about 3 grid blocks and a
horizontal range of about 30 grid blocks.

Fig. 2 shows three slices through an SIS realiza-
tion with Option 0 — SK and no cleaning. The global
proportions and variograms are reasonably repro-
duced. The local well data are exactly reproduced.
The local probabilities are not used in the modeling
and are not reproduced. Fig. 3 shows one of the
slices through SK-based realizations with different
levels of cleaning. The facies are indeed smoother
and less erratic as the cleaning level increases.

Realizations were generated with all options;
however, to save space, the results are not shown.
The OK option preserves trends away from the well
data better than the SK option. The two LVM
realizations look very similar. The collocated cokri-
ging option led to results very similar to the LVM.
The Bayesian updating and the permanence of
ratios options let to results that were almost exactly
the same. These two models gave too much
influence to the secondary variable. Fig. 4 show
the results for block cokriging. The block size is the
same as the simulation scale in the horizontal plane
and the entire model size in the vertical direction.
This mimics the case of seismic data in a relatively
thin stratigraphic interval. The results of block
kriging and cokriging are very similar in this case
because the correlation coefficient in the block
kriging is very high.

Fig. 5 shows the reproduction of the areal
proportion in category 1 over all slices (averaged
over 10 realizations for numerical stability). The
reference proportion is shown at the top. The
influence of the wells can be seen in all cases. In
the simple kriging model (upper left), we only see
the influence of the wells since the trend model is not
used; the reproduction of the trend model is quite
poor. The ordinary kriging model (upper center)
also only uses the wells, but the local estimation of
the mean leads to fairly good results. We note that
ordinary kriging works quite well with indicators
because the kriging variance is not used (as it is in
Gaussian simulation). The LVM, cokriging and
block kriging models all look quite good. The
Bayesian updating and the permanence of ratios
have too many category 1 blocks in the central area.

There is a large amount of sensitivity in the
selection of the best option. The results of block
kriging look good in this case. The secondary data is

not always so smooth; another algorithm could
work better in the case of a secondary variable
arising from geophysical measurements. An advan-
tage of the BlockSIS program is that many
different algorithms can be easily tried.

5. Conclusions

Sequential indicator simulation is a useful cate-
gorical variable simulation tool. There are a number
of important implementation choices, particularly
in presence of soft secondary data. The BlockSIS
program implements most of the available techni-
ques including block (co)kriging. This program also
integrates a common image cleaning algorithm
using the covariance lookup table and conditioning
data that are readily accessible inside the simulation
algorithm.

Appendix A. Supplementary Materials

Supplementary data associated with this article
can be found in the online version at doi:10.1016/
j.cageo.2006.03.005.
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